欢迎访问东莞成考网!本网站为民间交流网站,主要为广大考生提供报考指导服务,官方信息以广东省教育考试院为准。
关闭成考导航
报考指南
东莞成考网招生专业
辅导资料
当前位置: 主页 > 成考资料 > 辅导讲义 > 辅导讲义高起点 > 理数

2021年东莞成人高考数学(理)复习重点:指数函数和对数函数

整编:东莞成考网 发布时间:2021-07-16 11:31:44浏览热度:
       指数函数、对数函数是成人高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.
 
  ●难点磁场
 
  (★★★★★)设f(x)=log2 ,F(x)= +f(x).
 
  (1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;
 
  (2)若f(x)的反函数为f-1(x),证明:对任意的自然数n(n≥3),都有f-1(n)> ;
 
  (3)若F(x)的反函数F-1(x),证明:方程F-1(x)=0有惟一解.
 
  ●案例探究
 
  [例1]已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点.
 
  (1)证明:点C、D和原点O在同一条直线上;
 
  (2)当BC平行于x轴时,求点A的坐标.
 
  命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力.属★★★★级题目.
 
  知识依托:(1)证明三点共线的方法:kOC=kOD.
 
  (2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A点坐标.
 
  错解分析:不易考虑运用方程思想去解决实际问题.
 
  技巧与方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A的坐标.
 
  (1)证明:设点A、B的横坐标分别为x1、x2,由题意知:x1>1,x2>1,则A、B纵坐标分别为log8x1,log8x2.因为A、B在过点O的直线上,所以 ,点C、D坐标分别为(x1,log2x1),(x2,log2x2),由于log2x1= = 3log8x2,所以OC的斜率:k1= ,
 
  OD的斜率:k2= ,由此可知:k1=k2,即O、C、D在同一条直线上.
 
  (2)解:由BC平行于x轴知:log2x1=log8x2 即:log2x1= log2x2,代入x2log8x1=x1log8x2得:x13log8x1=3x1log8x1,由于x1>1知log8x1≠0,∴x13=3x1.又x1>1,∴x1= ,则点A的坐标为( ,log8 ).
 
  [例2]在xOy平面上有一点列P1(a1,b1),P2(a2,b2),…,Pn(an,bn)…,对每个自然数n点Pn位于函数y=2000( )x(0
 
  (1)求点Pn的纵坐标bn的表达式;
 
  (2)若对于每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围;
 
  (3)设Cn=lg(bn)(n∈N*),若a取(2)中确定的范围内的最小整数,问数列{Cn}前多少项的和最大?试说明理由.
 
  命题意图:本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力.属★★★★★级
 
  题目.
 
  知识依托:指数函数、对数函数及数列、最值等知识.
 
  错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口.
 
  技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识点去解决问题.
 
  解:(1)由题意知:an=n+ ,∴bn=2000( ) .
 
  (2)∵函数y=2000( )x(0bn+1>bn+2.则以bn,bn+1,bn+2为边长能构成一个三角形的充要条件是bn+2+bn+1>bn,即( )2+( )-1>0,解得a<-5(1+ )或a>5( -1).∴5( -1)
 
  (3)∵5( -1)
 
  ∴bn=2000( ) .数列{bn}是一个递减的正数数列,对每个自然数n≥2,Bn=bnBn-1.于是当bn≥1时,Bn
 
  ●锦囊妙计
 
  本难点所涉及的问题以及解决的方法有:
 
  (1)运用两种函数的图象和性质去解决基本问题.此类题目要求考生熟练掌握函数的图象和性质并能灵活应用.
 
  (2)综合性题目.此类题目要求考生具有较强的分析能力和逻辑思维能力.
 
  (3)应用题目.此类题目要求考生具有较强的建模能力.

本文标签:东莞成考理数2021年东莞成人高考数学(理)复习重点:指数函数和对数函数

转载请注明:文章转载自(http://www.dgckw.net

本文地址:http://www.dgckw.net/lishu474/16430.html

成考倒计时

立刻定制专属提升方案

  OR 点我咨询 点我关注 点我加群

已有6927人已成功提升学历

学历提升方式

咨询电话

177-2280-6683

在线招生老师