欢迎访问东莞成考网!本网站为民间交流网站,主要为广大考生提供报考指导服务,官方信息以广东省教育考试院为准。
关闭成考导航
报考指南
东莞成考网招生专业
辅导资料
当前位置: 主页 > 成考资料 > 辅导讲义 > 辅导讲义高起点 > 文数

2021年东莞成人高考文科数学考点:求解函数解析式

整编:东莞成考网 发布时间:2020-12-02 17:46:33浏览热度:
2021年东莞成人高考文科数学考点:求解函数解析式

  求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力。



  ●难点磁场



  (★★★★)已知f(2-cosx)=cos2x+cosx,求f(x-1).



  ●案例探究



  [例1](1)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式.



  (2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表达式.



  命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属★★★★题目.



  知识依托:利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域.



  错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错.



  技巧与方法:(1)用换元法;(2)用待定系数法.



  解:(1)令t=logax(a>1,t>0;0



  因此f(t)= (at-a-t)



  ∴f(x)= (ax-a-x)(a>1,x>0;0



  (2)由f(1)=a+b+c,f(-1)=a-b+c,f(0)=c



  得 并且f(1)、f(-1)、f(0)不能同时等于1或-1,所以所求函数为:f(x)=2x2-1或f(x)=-2x2+1或f(x)=-x2-x+1或f(x)=x2-x-1或f(x)=-x2+x+1或f(x)=x2+x-1.



  [例2]设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象.



  命题意图:本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.属★★★★题目. 知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线.



  错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱.



  技巧与方法:合理进行分类,并运用待定系数法求函数表达式.



  解:(1)当x≤-1时,设f(x)=x+b



  ∵射线过点(-2,0).∴0=-2+b即b=2,∴f(x)=x+2.



  (2)当-1



  ∵抛物线过点(-1,1),∴1=a·(-1)2+2,即a=-1



  ∴f(x)=-x2+2.



  (3)当x≥1时,f(x)=-x+2



  综上可知:f(x)= 作图由读者来完成.



  ●锦囊妙计



  本难点所涉及的问题及解决方法主要有:



  1.待定系数法,如果已知函数解析式的构造时,用待定系数法;



  2.换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法;



  3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x);



  另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.

本文标签:东莞成考文数2021年东莞成人高考文科数学考点:求解函数解析式

转载请注明:文章转载自(http://www.dgckw.net

本文地址:http://www.dgckw.net/wenshu964/16050.html

成考倒计时

立刻定制专属提升方案

  OR 点我咨询 点我关注 点我加群

已有6927人已成功提升学历

学历提升方式

咨询电话

177-2280-6683

在线招生老师